Portable Barrier Discharge Excilamps

D.V. Schitz, V.F. Tarasenko, V.S. Skakun, M.I. Lomaev, and S.M. Avdeev

Institute of High Current Electronics SB RAS, 2/3, Akademichesky ave., Tomsk, 634055, Russia
Phone: +7(3822) 49-14-12, Fax: +7(3822) 49-14-10, E-mail: schutz@loi.hcei.tsc.ru

Abstract – Portable excilamps developed in the Laboratory of Optical Radiation (LOR) are described. The main characteristics of radiators and constructions of portable barrier discharge UV- and VUV-excilamps are reported. Application areas of portable excilamps are listed in the present paper.

1. Introduction

The excilamps are simple gas-discharge sources of spontaneous narrow-band ultraviolet (UV) and vacuum ultraviolet (VUV) radiation due to the decomposition of excimer molecules (excited dimer – excimer, in the case of a molecule consisting of equal atoms, for example, Ar₂*) or exciplex molecules (excited complex – exciplex, in the case of a heteronuclear molecule, for example, XeCl*) [1]. Sources of radiation of such type provide energy of photons from 3 to 9.87 eV, which is sufficient for application of excilamps practically in all known photoprocesses in which UV and/or VUV radiation is necessary.

Thanks to the extraordinary properties of excilamps, their appearance on the world market of science technologies has been met with considerable interest. Originality of excilamps consists in the next:
- simple device design (in comparison with excimer lasers);
- unlike mercury, hydrogen and thermal sources of spontaneous UV or VUV radiation, the main part of the radiation power of excilamps driven by capacitive or barrier discharges (up to 80%) is concentrated in the band of B → X transitions with 10 nm FWHM, because of this, excilamps can be used in applications in which a selective effect of radiation on an investigated object is required;
- it is possible to use excilamps to irradiate at once a large area of an object (in one step);
- operating gas of excilamps does not contain metal vapors such as mercury and cadmium, that is why it is easy to recycle excilamps after ending of their lifetime.

Use of powerful excilamps with a large area of radiation is ineffective to irradiate a small area (10–100 cm²). Portable excilamps are developed with the aim to receive the homogeneous and plane front of one or several radiations with a small area of irradiation for use in a lab environment. Design of portable excilamps means join of a radiator, a power supply and a cooling system in one box. The idea of creation of portable UV or VUV radiators is not new and is widely used in the world, but not portable excilamps. The leader of development of portable excilamps with various optical features is the Laboratory of Optical Radiation of SB RAS.

Excilamp radiators are represented two coaxial quartz tubes of different diameters soldered at ends. The reflector is placed on a coaxial radiator in one half-plane to receive radiation, and grid electrode 2 is used to extract radiation (Fig. 1.)

Fig. 1. Cross section of a radiator: 1 – quartz tubes; 2 – grid electrode; 3 – reflective electrode; 4 – power supply; 5 – discharge

2. Emission spectra of excilamps

An important characteristic of excilamps is their emission spectrum. Contrary to the case of mercury, hydrogen, and thermal sources of spontaneous UV and VUV radiation, the emission spectra of excilamps consist of comparatively narrow bands of B → X-, D → X-, and C → A-transitions of the corresponding molecules. Since the main fraction of the radiation power of capacitive- and barrier-discharge excilamps (up to 80%) is contained in the bands of the B → X-transitions and the half-height width of these bands does not exceed 10 nm, the latter can be used in applications in which a selective action of radiation on the object under study is required [2].

Figure 2 shows typical emission spectra of exciplex lamps and wavelengths of portable excilamps are listed in the Table.

1 The present work is supported by ISTC Partner Project Agreement No. 3583 “Water treatment using advanced ultraviolet light sources while Northern California”.

324
Operating molecules and wavelength of portable excilamps

<table>
<thead>
<tr>
<th>Operating molecule</th>
<th>Wavelength of the maximum of spectral distribution, λ, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe$_2^*$</td>
<td>172</td>
</tr>
<tr>
<td>I$_2^*$</td>
<td>342</td>
</tr>
<tr>
<td>Br$_2^*$</td>
<td>289</td>
</tr>
<tr>
<td>Cl$_2^*$</td>
<td>259</td>
</tr>
<tr>
<td>KrBr*</td>
<td>207</td>
</tr>
<tr>
<td>KrCl*</td>
<td>222</td>
</tr>
<tr>
<td>KrI*</td>
<td>190</td>
</tr>
<tr>
<td>XeBr*</td>
<td>283</td>
</tr>
<tr>
<td>XeCl*</td>
<td>308</td>
</tr>
<tr>
<td>XeI*</td>
<td>253</td>
</tr>
</tbody>
</table>

The emission spectra of barrier-discharge excilamps consist of highly pronounced bands of the $B \rightarrow X$-transitions and weak bands of the $C \rightarrow A$-transitions. The $D \rightarrow X$ bands are usually absent, and the half-height width of the $B \rightarrow X$ bands for the $B \rightarrow X$ transition are 1.6, 1.9, 1.8, 3.3, and 1.6 nm for KrCl*, XeCl*, XeI*, XeBr*, and KrBr* excilamps, respectively.

The emission spectra of an excilamp of a barrier discharge on xenon dimers have a simpler structure. In this case, the emission spectra contain the $B \rightarrow X$ band with the maxima at 172, 289, and 259 nm that has approximately the half-height width 9.6, 6, and 8 nm at average pressures for Xe$_2^-$, Br$_2^-$, and Cl$_2^-$ excilamps, respectively.

So, with changing operating gases or gas mixtures in excilamps, it is possible to generate narrow-band radiation of excilamps with a necessary wavelength at maximum (see the Table), therefore the main characteristics of portable excilamps except spectra are reported in the paper.

3. Portable UV excilamps

In a portable UV excilamp, a radiator is inserted into a metal box together with a power supply and an air cooling system. Use of excilamps with a radiator separated from a power supply, may cause electric injury, as high voltage is used to ignite barrier discharges. Design of portable excilamps means high voltage feeding the radiator does not take out from the metal box that provides a safety operation of excilamps.

To produce radiation in one half-plane we use a unique patented design of a bulb with electrodes for portable excilamps. A radiator has a coaxial design with a reflector and radiation of the excilamp is directed to the limited solid angle [3]. Due to an inner electrode halved, the discharge is located only in one plane of an excilamp bulb. Such design of electrodes has high efficiency of the radiation output in one half-plane in comparison with design with a solid electrode, because a part of radiation is screened by this electrode. Photos of portable excilamps with the radiation power 4W and 1W are presented in Fig. 3.

Portable excilamps of UV radiation directed to bottom were created to investigate influence of UV on biological objects, processes of photochemical reactions and disinfection (Fig. 4). Cooling of a radiator is carried out by the airflow produced from two fans installed on flanks of the excilamp box.
cilamps of the VUV range are widely used in lab researches. As known, VUV light is absorbed by molecules of oxygen, so VUV irradiation is not possible in the air. To transmit VUV light to an irradiated object it is necessary to reduce maximum distance from a radiator to the object (to irradiate closely), or to use a special chamber filled with a rare gas.

Figure 5 shows a Xe-excilamp with a hermetic flange that operates in a vacuum- or a gas-filled chamber.

![Fig. 5. VUV excilamp with a hermetic flange](image1)

The power of VUV radiation is 1 W. Krypton is added to xenon to broaden the emission spectrum in a short-wave area. Diameter of a radiator is 30 mm, its length – 190 mm, its weight with a power supply is 1.1 kg.

5. Photoreactors

Portable photoreactors using barrier-discharge excilamps have been also developed in the Laboratory of Optical Radiation. On the basis of scientific investigations published in [5], one-barrier Xe-excilamps with a high-curvature cathode and a large area of radiation surface have been developed. The length of a quartz bulb covered with a grounded metal mesh was 1200 mm and a diameter – 20 mm. A stainless steel wire was employed as a cathode. The specific radiation power of xenon dimer was 25 mW/cm² ($\lambda = 172$ nm). A reactor was made on the basis of this lamp to irradiate liquids or gases. The Xe-excilamp was inserted into a metal tube with fittings to pump liquid or gas.

At irradiation of some liquids or gases there is problem of contamination of a quartz surface of radiators. The portable photoreactor with replaceable tubes for liquid or gas flow has been developed in LOR. A power supply and a radiator are placed in one box (Fig. 6).

![Fig. 6. Portable photoreactor with replaceable tubes of liquid or gas flow](image2)

From box sides there are holes to insert a quartz tube which passes through a radiator. Radiation directed to a bulb axis is taken out through a grid electrode and through a quartz tube for gas or liquid irradiation.

6. Powerful portable excilamps

A unique design excilamp with a large aperture has been developed in LOR. Power excilamps are cooled as a rule by deionized water or other liquid cooling agent that complicates considerably the device. We used a powerful air flow from several fan blowers and a special configuration of electrodes for cooling of the excilamp shown in Fig. 7.

![Fig. 7. Large-aperture portable excilamp: 1 – metal box; 2 – radiator; 3 – cooling system; 4 – timer; 5 – holders of a radiator](image3)
Radiation, as well as in previous excilamps, was taken out in one half-plane with the specific power to 30 mW/cm² at the aperture 70 x 6.5 cm. Hence the full power of excilamp radiation directed to one half-plane was 13.5 W. The excilamp is provided by timer 4 which helps to set time of expositions accurate within 1 s. The radiator is fixed by means of two holders 5 on bulb ends, and high voltage and a grounder are made in the form of connectors. Thus, the user can easily and quickly replace a radiator without special tools. Power consumption of the excilamp from AC network is 600 W, its weight – 8 kg.

7. Applications of portable excilamps

The excilamp technology offers a great number of applications in photoscience. We allocate the following tendencies in the development of excilamps and accompanying technologies [6]:

- progress of excilamp applications in photomedicine (phototherapy, photoimmunology etc.). For example, portable XeCl-excilamps (λ ~ 308 nm) can be used in medical applications [7], because of their radiation spectrum that represents mainly the band radiation of B → X-transitions of XeCl∗ molecule with maximum at 308 nm and shortwave wing of the band of ~30 nm. More than 90% of radiant energy lies in the active spectrum of UVB radiation working for psoriasis curing. The last makes XeCl-excilamps to be the unique sources of radiation suitable for psoriasis photocuring;
- inclusion of excilamps in multicomponent analytical systems (e.g., in the chromatography apparatus);
- applications of excilamps in photochemistry of gas mixtures at elevated pressures. When solutions of organic and inorganic substances are irradiated, the following stages take place: 1) absorption of light quanta, 2) primary photochemical processes, and 3) dark (secondary) processes between the substances formed at stage 2. It often happens that, implying the whole cycle that terminates in decomposition, a photomineralization process is considered that can generally be written as

\[C_nH_mX_z (hv, O_2) \rightarrow nCO_2 + (m - z)/2H_2O + zHX, \]

where X is heteroatomic organic molecules that are transformed into the corresponding mineral acids HX (HNO₂, H₂SO₄, HCl, HNO₃, etc.). In the foreign literature, such photochemical processes and technologies related to them have been named Advanced Oxidation Processes (AOPs), and less used alternative names Advanced Oxidation Technologies (AOTs) and Enhanced Oxidation Processes (EOPs). A specific feature of the photochemical activation of a substance is its selectivity as compared to the thermal activation, as radiation interacts only with the substance that absorbs it;
- substitution of mercury-containing lamps in existing apparatus (e.g., for water and air disinfection and purification, UV-curing of coatings) by excilamps;
- UV-sterilizers on the basis of excilamps [8];
- applications of excilamps in photosynthesis, e.g., for synthesizing vitamin D;
- for solving ecological problems, e.g., for photochemical decomposition of industrial waste;
- for thin films deposition;
- for cleaning of semi-conductor surfaces;
- use of narrow-band excilamps in photobiology may help to obtain new data on the interaction of UV radiation with biosystems of various natures. Excilamps have and will certainly find wide use in modern science and industry applications.

References